Electrical Model of a Membraneless Micro Redox Flow Battery—Fluid Dynamics Influence

نویسندگان

چکیده

Membraneless micro redox flow batteries are an incipient technology that has been shown to extend some properties of traditional batteries. Due their microfluidic scale and the absence membrane, fluid dynamics operation is critical in electrical response. In this work, model established evaluate influence on three battery performance metrics: steady-state power, power transient dynamics, mixing self-discharge losses. First, equivalent circuit, derived from a state-of-the-art regular defined by studying changes its impedances source, aggregating it as variable. Then, empirical data used demonstrate proposed equations defining variation response relative parameters identified with grey box methods. The incorporates interphase position, extending conventionally expressions, such Faraday textasciiacute s Law Nersnt equation, for membraneless analysis. A built, which becomes effectively relevant intermittent applications (such many renewable energy storage ones). Finally, losses evaluated state charge at outputs cell, using spectrophotometry measurements, compared flowmeter values. This demonstrates flow-rate values can provide precise quantification these dependent analyses be fluidic operation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membraneless vanadium redox fuel cell using laminar flow.

This paper describes the design and characterization of a small, membraneless redox fuel cell. The smallest channel dimensions of the cell were 2 mm x 50 mum or x 200 mum; the cell was fabricated in poly(dimethylsiloxane) using soft lithography. This all-vanadium fuel cell took advantage of laminar flow to obviate the need for a membrane to separate the solutions of oxidizing and reducing compo...

متن کامل

A Numerical Simulation of Vanadium Redox Flow Batteries

The recent penetration of renewable sources in the energy system caused a transformation of the needs of the distribution system and amplified the need of energy storage systems to properly balance the electricity grid. Among electrochemical energy storage devices, all vanadium flow batteries are those of the most promising technologies due to their high efficiency, long lifetime, reliability a...

متن کامل

A Coupled Dynamical Model of Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit

The redox (Reduction-Oxidation) flow battery is one of the most promising rechargeable batteries due to its ability to average loads and output of power sources. The transient characteristics are well known as the remarkable feature of the battery. Then it can also compensate for a sudden voltage drop. The dynamics are governed by the chemical reactions, fluid flow, and electrical circuit of it...

متن کامل

Simulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model

Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2023.3273927